M1. (a) distance is a scalar and displacement is a vector
or
distance has magnitude only, displacement has magnitude and direction
(b) 37.5 km
accept any value between 37.0 and 38.0 inclusive
$062^{\circ}$ or $\mathrm{N} 62^{\circ} \mathrm{E}$
accept $62^{\circ}$ to the right of the vertical
accept an angle in the range $60^{\circ}-64^{\circ}$
accept the angle correctly measured and marked on the diagram
(c) train changes direction so velocity changes
acceleration is the rate of change of velocity
(d) number of squares below line $=17$
accept any number between 16 and 18 inclusive
each square represents 500 m
distance $=$ number of squares $\times$ value of each square correctly calculated -8500 m

M2. (a) (i) gravity/weight
(ii) 2193750000000 or $2.19 \times 10^{12}$ not $2.19^{12}$
allow 1 mark for the correct conversion to 7500 ( $\mathrm{m} / \mathrm{s}$ ) allow one mark for answer 2193750(J)
transferred to heat
ignore extras of sound and light accept changed to heat accept lost due to friction
$\frac{\text { change in velocity }}{\text { time (taken) }}$
(b) (i) acceleration $=$ time (taken)

$$
\begin{aligned}
& \text { accept word speed instead of velocity } \\
& \text { accept a }=\frac{v-u}{t} \\
& \text { or correct rearrangement } \\
& \text { do not accept } \\
& \text { even if subsequent calculation correct }
\end{aligned}
$$


can gain credit if subsequent calculation correct
(ii) 2
ignore + or - signs
$\mathrm{m} / \mathrm{s}^{2} \quad 1$
accept $\mathrm{m} / \mathrm{s} / \mathrm{s}^{2}$ or $\mathrm{ms}^{2}$
(c) (i) force $=$ mass $\times$ acceleration accept correct rearrangement accept $F=m \times a$ do not accept

unless subsequent calculation correct
(ii) 156000 accept $78000 \times$ their (b)(ii)(only if (b)(i) correct)

M3. (a) Each scale optimum
Else both half size
Straight line joining 30,0 to $30,0.67$ to $0,5.67$
any 5 for 1 mark each
(b) 6

Else $\mathrm{a}=30 / 5$
gets 2 marks
Else $\mathrm{a}=\mathrm{v} / \mathrm{t}$
gets 1 mark
(c) 9000

Else F = $6 \times 1500$
gets 2 marks
Else F = ma
gets 1 mark
(d) (i) Driver has forward momentum Which is conserved
Giving drive relative forward speed to car for one mark each
(ii) Car stops in 75 m
gets 1 mark

$$
\mathrm{W}=\mathrm{F} . \mathrm{d} \text { or } 9000 \times 75
$$

gets 1 mark
$\mathrm{W}=675000 \mathrm{~J}$
OR ke = $1 / 2 \mathrm{mv}^{2}$
gets 1 mark
$k e=1 / 2.1500 .302$
$k e=675000 \mathrm{~J}$

M4. (a) (i) longer reaction time accept slower reactions do not accept slower reaction time unless qualified orgreater thinking distance accept greater thinking time orgreater stopping distance accept greater stopping time greater braking distance negates answer
(b) $\mathbf{Z}$
accept extracting both reaction times correctly for 1 mark(0.6 and 1.4)
or time $=0.8$ (s) for 1 mark accept $0.8 \times 15$ for 2 marks accept calculating the distance travelled by car $\boldsymbol{A}$ as 28.5 m or the distance travelled by car $\boldsymbol{B}$ as 40.5 m for $\mathbf{2}$ marks
(iii) 12 accept any time between 2.4 and 2.8
accept braking distances are the same accept any time between 2.4 and 2.8
accept braking distances are the same

accept slopes are the same orvelocity decreases to zero in same time / in 2.6 seconds
.

M5.
(a) any two from:

- (acceleration occurs when) the direction (of each capsule) changes
- velocity has direction
- acceleration is (rate of) change of velocity
(b) to(wards) the centre (of the wheel)
(c) the greater the radius / diameter / circumference (of the wheel) the smaller the (resultant) force (required)
accept 'the size' for radiusboth parts required for the mark

